BASIC AGRICULTURAL GENETICS

Genetic concepts

- **GENETIC TERMINOLOGY:**

 1. **Genetics/heredity:** The study of inheritance/genes.
 2. **Heredity:** Transfer of genetic factors from one individual to the next/is the way in which characteristics are inherited.
 3. **Genes:** A unit of heredity that carries information for each characteristic of an organism.
 4. **Chromosomes:** Threadlike structures in the nucleus of the cell, made up of DNA.
 5. **Alleles:** Variations of the same gene/different form of the same gene.
 6. **Homozygous:** Having identical (same) alleles for a particular gene, e.g TT or tt.
 7. **Heterozygous:** Having different alleles of a gene, e.g Tt.

- **THE DISTINCTION BETWEEN GENOTYPE AND PHENOTYPE, DOMINANT AND RECESSIVE GENES**

 1. **Genotype:** Genetic makeup of an organism.
 2. **Phenotype:** Physical appearance of an individual due to genetic makeup.
 3. **Dominant:** Allele that overrides or masks the characteristics of a recessive allele.
 4. **Recessive:** An allele that is masked by the presence of a dominant allele and which only appears in the phenotype if the organism is homozygous.

- **THE MONOHYBRID INHERITANCE/CROSSES (SINGLE-TRAIT CROSSES): MENDEL’S SECOND LAW: LAW OF SEGREGATION**

 - **Monohybrid inheritance/crosses:** Is a genetic cross between two individuals involving a single pair of contrasting characteristics, e.g green seeds versus yellow seeds in pea plants.
 - **Mendel’s First Law (Law of Segregation):** States that pairs of alleles segregate (separate) during the formation of gametes (during meiosis) and randomly combine during fertilisation.

- **THE DIHYBRID INHERITANCE/DIHYBRID CROSSES: MENDEL’S SECOND LAW: LAW OF INDEPENDENT ASSORTMENT**

 - **Dihybrid inheritance/crosses:** Is a cross between two individuals that have different alleles for two selected traits.
 - OR A genetic cross that involves two pairs of a contrasting characteristics.
- Mendel’s Second Law: Law of independent assortment / Independent Recombination: State that pairs of alleles separate independently during the formation of gametes. This means that traits are passed to offspring independently of one another.

- The use of various methods such as Punnett Square/Chequer Board, Genetic Diagrams and Schematic Representations to illustrate the crosses

- **Punnett Square/Chequer Board**

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bb</td>
<td>Bb</td>
</tr>
<tr>
<td>Bb</td>
<td>Bb</td>
<td></td>
</tr>
</tbody>
</table>

- **Genetic Diagrams**

```
BB  bb
B B  B B
```

- **Schematic Representations**

- Mendel’s Law of Segregation and Independent Recombination of Characteristics

- Qualitative and Quantitative Characteristics

- **Qualitative Characteristics**

 - Characteristics such as Eye Colour or Gender (e.g. whether the organism is male or female). In other words, qualitative characteristics involve a particular quality of the organism.

- **Quantitative Characteristics**

 - Involve a quantity such as height, weight, egg or milk production.
 - The number of genes an organism has for a particular trait determine this type of characteristic. This is called polygenic inheritance.
 - In this case, the genes have an additive effect. For example, if a person has a few genes for shortness and a few genes for tallness, then that person will be of medium height.
THE PATTERN OF INHERITANCE

THE PATTERN OF INHERITANCE THAT LEADS TO DIFFERENT PHENOTYPES:
1) Incomplete Dominance
2) Co-dominance
3) Multiple alleles
4) Polygenic inheritance
5) Epistasis

1. **Incomplete dominance**: Inheritance of two alleles that are partially expressed, when often produces an intermediate characteristic.

2. **Co-dominance**: Inheritance of two alleles that are dominant and fully expressed in the phenotype.
3. **Multiple alleles**: A mechanism of inheritance that involves more than two alleles for one gene. OR when there are more than two alleles for the same gene.

4. **Polygenic inheritance**: Trait controlled by many genes.

5. **Epistasis**: Masking of the phenotypic effect of alleles at one gene by the alleles of another gene.

- **THE CONCEPTS**: Prepotency

 : Atavism/Throwback (With relevant example)

 1. **Prepotency**: Ability of one parent to transmit more characteristics to its offspring than the other parent.

 - Or ability of some animals to transmit their characteristics to their progeny

 2. **Atavism/Throwback**: The reappearance of a characteristic in an organism after a period of absence.

- **THE SEX CHROMOSOMES AND SEX –LINKED CHARACTERISTICS (EXAMPLES)**

 - Female humans and mammals have two (XX) chromosomes

 - While the male have (X) chromosome and a small (y) chromosome e.g (Xy)

 - Humans and animals have 50:50 chance of producing male or female offspring.

 - Sex linked genes are located on the Sex chromosomes

<table>
<thead>
<tr>
<th>FEMALE</th>
<th>MALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X X</td>
<td>X y</td>
</tr>
</tbody>
</table>

- **THE FOLLOWING GENETIC TERMINOLOGY:**

 1. Variation

 2. Mutation

 3. Selection

 a) **Variation**: Differences between individuals of the same species

 b) **Mutation**: A sudden/random change in the structure of DNA
c) **Selection**: Choosing individuals to be used for breeding purposes due to superior characteristics. /is the process of choosing individuals with desirable characteristics to be used as parents.

- **THE TYPES OF VARIATION**
 1. **Continuous variation**: Type of variation in which the characteristics can take on a complete range of forms from one extreme to the other.
 2. **Discontinuous variation**: Type of variation that has a few clear-cut forms with no forms in between.

- **THE TYPES OF MUTATIONS**
 1. Gene mutations
 2. Somatic mutations
 3. Induced mutations

- **THE TYPES OF SELECTION (SELECTION METHODS)**
 1. **Mass selection**: Type of selection that is based on the individual animal's performance in the field.
 2. **Pedigree selection**: Type of selection that is based on the quality of the animal's ancestors
 3. **Family selection**: Type of selection that is based on the quality of the animal’s relatives of its generation (full/half siblings)
 4. **Progeny selection**: Type of selection that is based on the quality of the animal's offspring.

- **THE IMPORTANCE OF VARIATION AND SELECTION**

 The Importance of Variation

 1. Animals/plants with superior characteristics can be selected for breeding purposes.
 2. Helps to improve the progeny/ offspring.
 3. Generate new varieties/ breeds/ cultivars
 4. Maintains biodiversity
 5. It improves the ability of an organism to survive or adapt.
 6. It is the foundation of selection and breeding programmes.

 The Importance of Selection

 1. It results in livestock improvement
 2. Only allow animals with the best characteristics to be bred/ desired characteristics to be bred
 3. Allow animals with desired characteristics/ traits to be used in the production of quality offspring

 Characteristics Considered For Selection
1. Growth
2. Health
3. Fertility

❖ THE EXTERNAL (ENVIRONMENTAL) AND INTERNAL (GENETIC) CAUSES OF VARIATION.

The External (Environmental) Causes of Variations

1. Climate/Temperature/Light intensity
2. Feeding/Nutrition
3. Exercise
4. Diseases
5. Topography/Relief/Terrain

The Internal (Genetic) Causes of Variations

1. Recombination of genes
2. Crossing-over of chromosomes

❖ THE TYPES OF MUTAGENIC AGENTS AND THEIR EFFECTS.

- **Mutagenic agent** or **mutagen** is any factor that causes a mutation to occur.

 ➢ **Types of Mutagenic Agents**

 - X-rays
 - Cosmic rays
 - Ultraviolet radiation
 - High-energy radiation
 - Numerous chemicals/ e.g thalidomide, phenol and formaldehyde

 ➢ **Effect of Mutagenic Agents**

 - Many mutations cause cancer,
 - Gamma rays. X-rays may cause DNA breakage and other damage

❖ THE GENERAL PRINCIPLES OF SELECTION: Heritability and Biometrics

- **Heritability**: The degree to which genetics determines a characteristic.
- **Biometrics**: The use of statistics in biology.

❖ THE SELECTION METHODS USED BY PLANTS AND ANIMAL BREEDERS (Mass, Pedigree, Family and Progeny Selection)

-
-
-
-
-
THE FOLLOWING BREEDING SYSTEMS AND TERMINOLOGY: Breeding, Inbreeding, Cross Breeding, Species- Crossing, Out Crossing, Line-Crossing with relevant examples.

1. **Breeding**: Process of producing plants or animals by sexual reproduction.

2. **Inbreeding**: The crossing of two plants or animals that are closely related.
 - E.g Father and daughter, mother and son, brother and sister.

3. **Cross-breeding**: The breeding of two plants or animals that are not closely related. Is the mating of two pure bred animals of different breed.
 - Practiced by stock farmers to obtain hybrid.
 - Is the mating of two pure-bred animals of different breeds, but of the same species
 - E.g Afrikaner bull X Aberdeen Angus cow = Heterosis or hybrid cow
 - Herford bull X Africaner cow= Bonsmara
 - Shorthorn bull X Afrikaner cow = Bonsmara

4. **Species-crossing**: Is the mating of individuals of two different species.
 - E.g A horse mated with a donkey produces a mule.
 - Or Donkey stallion X horse mare= mule
 - **Uses of the MULE**: Used as draught animals for pulling implements/ploughing/working.
 - To carry loads/Transport.

5. **Out-crossing/out-breeding**: Is the mating of unrelated animals or of animals that are not closely related.

6. **Line-breeding**: Is the breeding of animals that share common ancestors but which are not closely related.

7. **Upgrading/Grading up**: Is the repeated mating of thoroughbred (pure-bred) male animals with inferior female animals. Excellent pure-bred males of a specific breed are mated generation after generation with females of inferior quality.

THE ADVANTAGES AND DISADVANTAGES OF CROSS BREEDING AND INBREEDING

ADVANTAGES AND DISADVANTAGES OF CROSS BREEDING

<table>
<thead>
<tr>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases genetic variation</td>
<td>Expert knowledge is required</td>
</tr>
<tr>
<td>Greater production (e.g more wool, milk, eggs, beef)</td>
<td>Different pure-bred bulls are expensive</td>
</tr>
<tr>
<td>Greater disease</td>
<td>Cross breeds are not suited for</td>
</tr>
<tr>
<td>Resistance/Greater Resistance to Disease</td>
<td>Breeding Purpose</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>• Increased fertility / Greater fertility</td>
<td>• Hybrids do not breed true / progeny is of poor quality</td>
</tr>
<tr>
<td>• Better adaptation to conditions / Better adapted</td>
<td>• Leads to dystocia (Calving problems)</td>
</tr>
<tr>
<td>• Leads to increased heterosis</td>
<td>• Destroys characteristics / more heterozygote's</td>
</tr>
<tr>
<td>• Hybrid vigour / Better performance</td>
<td></td>
</tr>
<tr>
<td>• Faster growth rates</td>
<td></td>
</tr>
<tr>
<td>• Possess better motherly instincts</td>
<td></td>
</tr>
</tbody>
</table>

Advantages and Disadvantages of Both Inbreeding and Line-breeding

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Speeds up uniformity / it ensures genetic uniformity</td>
<td>• Causes a loss of genetic variation / Decrease genetic variation</td>
</tr>
<tr>
<td>• They are uniform in appearance.</td>
<td>• Fertility, productivity and adaptability decrease in in-breds</td>
</tr>
<tr>
<td>• Strengthens good characteristics</td>
<td>• Reduced vigour and production.</td>
</tr>
<tr>
<td>• Greater prepotency is obtained</td>
<td>• Lowers viability of the progeny</td>
</tr>
<tr>
<td>• Best characteristics are transferred to the progeny</td>
<td>• Leads to inbreeding depression</td>
</tr>
<tr>
<td>• The quickest way to pure lines</td>
<td>• Increases the expression of lethal genes</td>
</tr>
<tr>
<td>• Bad recessive genes are eliminated</td>
<td>• Leads to deformed offspring</td>
</tr>
<tr>
<td></td>
<td>• Undesirable traits found in offspring</td>
</tr>
</tbody>
</table>

Advantages and Disadvantages of Species Crossing (Hybridisation)

<table>
<thead>
<tr>
<th>Advantages / Characteristics / Reasons for species crossing</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>• They are hardy animals / Mules are more hardy and adaptable than horses.</td>
<td>• Offspring are sterile</td>
</tr>
<tr>
<td>• They are drought animals / Mules are useful draught animals</td>
<td>• Male mule is sterile</td>
</tr>
<tr>
<td>• They are highly durable</td>
<td></td>
</tr>
<tr>
<td>• Can work better under unfavourable conditions than horses.</td>
<td></td>
</tr>
<tr>
<td>• Less susceptible to digestive problems, lameness and diseases</td>
<td></td>
</tr>
<tr>
<td>• Faster than donkeys and heavy draught horses</td>
<td></td>
</tr>
<tr>
<td>• Much stronger than the donkey</td>
<td></td>
</tr>
<tr>
<td>• Male mule more reliable and</td>
<td></td>
</tr>
</tbody>
</table>
better worker than mares

ADVANTAGES AND DISADVANTAGES OF UPGRADING

<table>
<thead>
<tr>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Improve the quality of the farm animal</td>
<td>• Time consuming</td>
</tr>
<tr>
<td>• Most economical method of improving herd.</td>
<td>• It is expensive/Bulls must always be bought from outside to reduce inbreeding</td>
</tr>
<tr>
<td>• Requires no specialised knowledge</td>
<td>• The commercial value of first few generation is low</td>
</tr>
<tr>
<td>• Possibility of deficient progeny is small</td>
<td>• The offspring can never be bred 100% pure/ 100% pure progeny cannot be obtained</td>
</tr>
<tr>
<td>• New breed gradually imported into a new environment</td>
<td>• Same bull for too many generations results in deformities</td>
</tr>
<tr>
<td>• Few adaptation problems</td>
<td></td>
</tr>
</tbody>
</table>

GENETIC MODIFICATION/ GENETIC ENGINEERING

- **THE CONCEPT GENETIC MODIFICATION/ GENETIC ENGINEERING IN PLANTS AND ANIMALS** (with relevant example)
 1. **Genetic modification**: technique of changing the characteristics of an organism by inserting genes from another organism into its DNA
 2. **Genetically modified organism (GMO)**: organism that contains genes from another organism. /OR an organism whose genetic characteristics have been changed by inserting the gene(s) of another organism into its DNA

- **THE AIM OF GENETIC MODIFICATION OF PLANTS AND ANIMALS**
 - Increase genetic diversity (by inserting variant alleles into other species)
 - Improve quality and productions of crops and livestock
 - Introduce specific desirable traits/ characteristics
 - GMO plant and animals are genetically prone to certain diseases and treating them in advance

- **THE ADVANTAGES OF GENETIC ENGINEERING OVER TRADITIONAL METHODS**
 - Precise/ desired genes are transferred
 - Not limited to crossing of the same species
 - More convenient
 - Faster/ requires only one generation to complete
 - More resistant to pests/ drought/ diseases/ herbicides
 - Higher yields
THE DISADVANTAGES OF GMO/ SOCIO-ECONOMIC EFFECT
- Small scale and poor farmers cannot afford GM Crops/ GM Crops are expensive
- A farmer is not allowed to re-use seeds from GM Crops
- The farmer may not use some seeds as they are sterile.
- Some consumers will not buy from the farmer due to ethical concerns
- It encourages monopoly which does not allow small companies to develop/ favours the producers and encourages exploitation of emerging farmers

THE CURRENT USES/ APPLICATION OF GENETICALLY MODIFIED PLANTS
- .
- .
- .
- .

THE TECHNIQUES USED TO GENETICALLY MODIFY PLANTS/ ANIMALS
- Electroporation
- Micro-injection
- Agrobacterium tumefaciens/ agrobacterial transfer
- Gene gun/ biolistics
- Recombinant DNA
- Viral carriers/ Viral vectors

THE DESCRIPTION (DESCRIBE) OF TECHNIQUES USED TO GENETICALLY MODIFIED PLANTS/ ANIMALS
- The gene is incorporated into (maize plant/tomatoes/oranges/farm animal) where it produces toxins.
- To protect the (maize plant/ tomatoes/oranges/farm animal) against the diseases (e.g maize stalk borer)

THE POTENTIAL BENEFITS OF GENETICALLY MODIFIED CROPS

- Potential benefits of GM Crops on Environment (Environmental benefits)
 a) Pest and insect resistance
 b) Use less chemicals
 c) Less susceptible to diseases

- Potential benefits of GM Crops on Economy (Economic benefits)
 a) Higher yields or production
 b) Mature quicker.

- Potential benefits of GM Crops on Health (Health benefits)
 a) Healthier
b) Tastier
 c) More nutritious foods.

BENEFITS OF GM Crops
- More productive with higher yields
- Resistant to pests and diseases hence reduce the use of chemicals
- Tolerant to harsh conditions/ resist hot temperatures
- Longer shelf life and better properties
- Better flavour, colour, texture and nutritional value
- Cheaper and more plentiful food.
- Keeping germination ability over a longer period of time/ longer viability of seed
- Formation of new substances
- Shorter/ longer growing period/ early/ late maturing

❖ **THE CHARACTERISTICS OF GMOs**

- Herbicide resistance
- Insect resistance/ pest resistance
- Resistance to harsh environmental conditions/ Drought resistance
- Improved nutritional value/ starch/ vitamins
- Modified/ improved quality
- Adaptability to environmental conditions
- Disease resistance
- Early maturing to escape harsh conditions

❖ **THE POTENTIAL RISKS OF GMOs**

- Food safety
- Environmental issues
- Socio-economic effects

 .

 Negative effects of GM Crops on the environment

- Production of super weeds
- Insect resistant plants also kill beneficial insects/ Beneficial insects can be killed
- Indiscriminate use of weed killers can destroy useful plants/ indiscriminate use of herbicides pollute the environment

❖ **DIFFERENCE BETWEEN HYBRID SEED AND GMO SEED**

<table>
<thead>
<tr>
<th>HYBRID SEED</th>
<th>GMO SEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA not altered</td>
<td>Altered DNA</td>
</tr>
<tr>
<td>Crossing of two in-bred lines (cultivars)</td>
<td>Genes from another organism are inserted into a cell</td>
</tr>
</tbody>
</table>